Numerical simulation of microstructural evolution in laser welding process

Welding has been an essential process in the manufacturing industries. In recent times, it has been introduced into the direct production industry by the means of laser-aided additive manufacturing LAAM). Welded parts are widely used in many industries such as the automotive and aviation industry. I...

Full description

Saved in:
Bibliographic Details
Main Author: Cheah, De Yi
Other Authors: Du Hejun
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/149863
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-149863
record_format dspace
spelling sg-ntu-dr.10356-1498632021-05-20T08:58:59Z Numerical simulation of microstructural evolution in laser welding process Cheah, De Yi Du Hejun School of Mechanical and Aerospace Engineering MHDU@ntu.edu.sg Engineering::Mechanical engineering Welding has been an essential process in the manufacturing industries. In recent times, it has been introduced into the direct production industry by the means of laser-aided additive manufacturing LAAM). Welded parts are widely used in many industries such as the automotive and aviation industry. In hese industries, the selection of materials is demanding and often requires a long lifespan and reliability to nsure the safety of the passengers. In addition, these materials were expected to undergo a wide range of emperatures. These could affect its mechanical as well as material properties. This project aims to study he effect of how processing parameters can affect the microstructures features of the processed materials during laser welding. In this study, stainless steel is selected as the experimental material. A coupled CA-FV model of finite element method is carried out on transient thermal and microstructural analysis using Open-source Field Operation And Manipulation (OpenFOAM) and ParaView. In this model, a heat source is used to resembles a laser torch. Heat transfer is first used to simulate the emperature evolution during welding. The result from the transient thermal analysis is then retrieved used as an input for microstructural analysis. The heat transfer and cell automaton ffect based on past literature has been considered. Two separate sets of simulations were carried out by arying different values for parameters – laser power and laser scanning velocity. Comparison and onclusion for thermal analysis and microstructural analysis were made. Results from thermal and icrostructure analysis have shown that the 2D the model was able to provide qualitative agreement and prediction of the simulated microstructure ormation during the welding process. Recommendations for future works such as developing a paralleled 3D model were suggested to further decrease the discrepancies between simulated and xperimental results. Bachelor of Engineering (Mechanical Engineering) 2021-05-20T08:58:58Z 2021-05-20T08:58:58Z 2021 Final Year Project (FYP) Cheah, D. Y. (2021). Numerical simulation of microstructural evolution in laser welding process. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/149863 https://hdl.handle.net/10356/149863 en C097 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Mechanical engineering
spellingShingle Engineering::Mechanical engineering
Cheah, De Yi
Numerical simulation of microstructural evolution in laser welding process
description Welding has been an essential process in the manufacturing industries. In recent times, it has been introduced into the direct production industry by the means of laser-aided additive manufacturing LAAM). Welded parts are widely used in many industries such as the automotive and aviation industry. In hese industries, the selection of materials is demanding and often requires a long lifespan and reliability to nsure the safety of the passengers. In addition, these materials were expected to undergo a wide range of emperatures. These could affect its mechanical as well as material properties. This project aims to study he effect of how processing parameters can affect the microstructures features of the processed materials during laser welding. In this study, stainless steel is selected as the experimental material. A coupled CA-FV model of finite element method is carried out on transient thermal and microstructural analysis using Open-source Field Operation And Manipulation (OpenFOAM) and ParaView. In this model, a heat source is used to resembles a laser torch. Heat transfer is first used to simulate the emperature evolution during welding. The result from the transient thermal analysis is then retrieved used as an input for microstructural analysis. The heat transfer and cell automaton ffect based on past literature has been considered. Two separate sets of simulations were carried out by arying different values for parameters – laser power and laser scanning velocity. Comparison and onclusion for thermal analysis and microstructural analysis were made. Results from thermal and icrostructure analysis have shown that the 2D the model was able to provide qualitative agreement and prediction of the simulated microstructure ormation during the welding process. Recommendations for future works such as developing a paralleled 3D model were suggested to further decrease the discrepancies between simulated and xperimental results.
author2 Du Hejun
author_facet Du Hejun
Cheah, De Yi
format Final Year Project
author Cheah, De Yi
author_sort Cheah, De Yi
title Numerical simulation of microstructural evolution in laser welding process
title_short Numerical simulation of microstructural evolution in laser welding process
title_full Numerical simulation of microstructural evolution in laser welding process
title_fullStr Numerical simulation of microstructural evolution in laser welding process
title_full_unstemmed Numerical simulation of microstructural evolution in laser welding process
title_sort numerical simulation of microstructural evolution in laser welding process
publisher Nanyang Technological University
publishDate 2021
url https://hdl.handle.net/10356/149863
_version_ 1701270609484316672