Dynamics and stability of subsonic crowdion clusters in 2D Morse crystal

Recently, the concept of supersonic N-crowdions was offered. In molecular dynamics simulations, they can be excited by initial kick of N neighboring atoms located in one close-packed atomic row along this row. In the present study, in 2D Morse crystal, we apply initial kick to M neighboring atoms lo...

Full description

Saved in:
Bibliographic Details
Main Authors: Korznikova, E. A., Shepelev, I. A., Chetverikov, A. P., Dmitriev, S. V., Fomin, S. Yu, Zhou, Kun
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150056
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Recently, the concept of supersonic N-crowdions was offered. In molecular dynamics simulations, they can be excited by initial kick of N neighboring atoms located in one close-packed atomic row along this row. In the present study, in 2D Morse crystal, we apply initial kick to M neighboring atoms located in neighboring close-packed atomic rows along these rows. This way, we initiate crowdion clusters called subsonic M-crowdions. It is well known that static 1-crowdion in 2D Morse lattice is unstable; as a result, the interstitial atom leaves the close-packed atomic row and becomes immobile. However, we show that 1-crowdion moving with sufficiently large subsonic velocity remains in the close-packed atomic row. Crowdion clusters with M equal to or greater than 2 appear to be stable even at rest, with growing M transforming into prismatic dislocation loops. It is important to note that stable subsonic M-crowdions (M > 1) remain mobile and they can carry interstitial atoms over long distances.