A double-layer mechanochromic hydrogel with multidirectional force sensing and encryption capability

Hydrogel-based soft mechanochromic materials that display colorimetric changes upon mechanical stimuli have attracted wide interest in sensors and display device applications. A common strategy to produce mechanochromic hydrogels is through photonic structures, in which mechanochromism is obtained b...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Qingdi, Van Vliet, Krystyn, Holten-Andersen, Niels, Miserez, Ali
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150195
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Hydrogel-based soft mechanochromic materials that display colorimetric changes upon mechanical stimuli have attracted wide interest in sensors and display device applications. A common strategy to produce mechanochromic hydrogels is through photonic structures, in which mechanochromism is obtained by strain-dependent diffraction of light. Here, a distinct concept and simple fabrication strategy is presented to produce luminescent mechanochromic hydrogels based on a double-layer design. The two layers contain different luminescent species—carbon dots and lanthanide ions—with overlapped excitation spectra and distinct emission spectra. The mechanochromism is rendered by strain-dependent transmittance of the top-layer, which regulates light emission from the bottom-layer to control the overall hydrogel luminescence. An analytical model is developed to predict the initial luminescence color and color changes as a function of uniaxial strain. Finally, this study demonstrates proof-of-concept applications of the mechanochromic hydrogel for pressure and contact force sensors as well as for encryption devices.