Comparison of different binary classification models on radiomic features
Improved cancer prognosis is an important goal of precision health medicine. Radiomics is the extraction of a high number of features from medical images. Machine Learning (ML) has advanced significantly in the last few years and offers many different approaches on how to detect and model out associ...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/150245 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-150245 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1502452021-05-25T06:57:54Z Comparison of different binary classification models on radiomic features Loo, Bryan Kun Hao Cai Yiyu School of Mechanical and Aerospace Engineering Singapore General Hospital MYYCai@ntu.edu.sg Engineering::Mechanical engineering Improved cancer prognosis is an important goal of precision health medicine. Radiomics is the extraction of a high number of features from medical images. Machine Learning (ML) has advanced significantly in the last few years and offers many different approaches on how to detect and model out associations. By applying different machine learning methods to the abundance of data provided by radiomic features, it will assist in carrying out cancer detection, prognosis as well as the prediction of treatment response. In this paper, the goal is to create a pipeline that doctors at SGH would be able to use by just attaching placing the csv file containing the radiomics feature into the work path folder and begin running through the code where different ML techniques will be used to carry out binary classification to classify either outcome 1 which indicates a pathological complete response or outcome 0 which indicates a non-pathological complete response. The workflow of the pipeline will be data preprocessing, feature selection, ML modeling and finally analysis of the results. Bachelor of Engineering (Mechanical Engineering) 2021-05-25T06:57:54Z 2021-05-25T06:57:54Z 2021 Final Year Project (FYP) Loo, B. K. H. (2021). Comparison of different binary classification models on radiomic features. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/150245 https://hdl.handle.net/10356/150245 en C052 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering |
spellingShingle |
Engineering::Mechanical engineering Loo, Bryan Kun Hao Comparison of different binary classification models on radiomic features |
description |
Improved cancer prognosis is an important goal of precision health medicine. Radiomics is the extraction of a high number of features from medical images. Machine Learning (ML) has advanced significantly in the last few years and offers many different approaches on how to detect and model out associations. By applying different machine learning methods to the abundance of data provided by radiomic features, it will assist in carrying out cancer detection, prognosis as well as the prediction of treatment response. In this paper, the goal is to create a pipeline that doctors at SGH would be able to use by just attaching placing the csv file containing the radiomics feature into the work path folder and begin running through the code where different ML techniques will be used to carry out binary classification to classify either outcome 1 which indicates a pathological complete response or outcome 0 which indicates a non-pathological complete response. The workflow of the pipeline will be data preprocessing, feature selection, ML modeling and finally analysis of the results. |
author2 |
Cai Yiyu |
author_facet |
Cai Yiyu Loo, Bryan Kun Hao |
format |
Final Year Project |
author |
Loo, Bryan Kun Hao |
author_sort |
Loo, Bryan Kun Hao |
title |
Comparison of different binary classification models on radiomic features |
title_short |
Comparison of different binary classification models on radiomic features |
title_full |
Comparison of different binary classification models on radiomic features |
title_fullStr |
Comparison of different binary classification models on radiomic features |
title_full_unstemmed |
Comparison of different binary classification models on radiomic features |
title_sort |
comparison of different binary classification models on radiomic features |
publisher |
Nanyang Technological University |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/150245 |
_version_ |
1701270628961615872 |