Context-based recommendation

With the rapid growth of the scientific literature, citation recommendation systems able to speed up literature review and citing process during a research process. Recent approaches use bag-of-word retrieval to represent the documents, which discards word order information which is important in rep...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Zi Heng
Other Authors: Lihui CHEN
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150326
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:With the rapid growth of the scientific literature, citation recommendation systems able to speed up literature review and citing process during a research process. Recent approaches use bag-of-word retrieval to represent the documents, which discards word order information which is important in representation for documents. This project presents a method of recommend candidate references using document representations based on context of each document by learning document representations that incorporate inter-document document relatedness using citation graph and the state-of-the-art Transformer language model. Documents can be embedded into a high-dimensional vector space. Given a query document, it can be encoded into a vector which its nearest neighbours could be retrieved as candidates for citation. A recommendation web application is implemented to facilitate the citation recommendation.