Privacy-aware deep learning for gender detection

With the recent advancements made in deep learning, it is clear that deep learning has become the most promising approach in artificial intelligence to tackle complex problems. Deep learning has shown its prowess in being able to learn large amounts of features due to its substantial learning capaci...

全面介紹

Saved in:
書目詳細資料
主要作者: Lee, Craigdon Zhi Jie
其他作者: Tay, Wee Peng
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2021
主題:
在線閱讀:https://hdl.handle.net/10356/150349
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:With the recent advancements made in deep learning, it is clear that deep learning has become the most promising approach in artificial intelligence to tackle complex problems. Deep learning has shown its prowess in being able to learn large amounts of features due to its substantial learning capacity. This report is a documentation of the progress of a Final Year Project. The aim is to Incorporate Generative Adversarial Privacy to achieve Gender neutrality of a face image coupled with A skin disease identifier created using YOLO. Being able to preserve the patient's identity while identifying a skin disease. So as to encourage patients to use medical application systems with heightened privacy and also to give a second opinion on common skin diseases.