Driving style recognition with privacy protection

The objective of the FYP is to use a myriad of RNN, Long Short-Term Memory networks (LSTMs) to detect between different driving styles and simultaneously include a method to protect the confidentiality of the data captured. Using data collected and filtered through a Kalman Filter, to estimate the p...

Full description

Saved in:
Bibliographic Details
Main Author: Seet, Jonathan Wei Han
Other Authors: Tay, Wee Peng
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150350
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The objective of the FYP is to use a myriad of RNN, Long Short-Term Memory networks (LSTMs) to detect between different driving styles and simultaneously include a method to protect the confidentiality of the data captured. Using data collected and filtered through a Kalman Filter, to estimate the position, without showcasing the true location. In addition, by creating a neural network that produces an encoded version of the raw data that can be utilized to be train on working models. With the encoded version of the raw data, the Extended Kalman Filter would be able to produce a hidden version of the driver’s location This would bring about privacy while having the ability to distinguish a driver’s behavior.