The photophysics of polythiophene nanoparticles for biological applications
In this work the photophysics of poly(3-hexylthiophene) nanoparticles (NPs) is investigated in the context of their biological applications. The NPs, made as colloidal suspensions in aqueous buffers, present a distinct absorption band in the low-energy region. On the basis of systematic analysis of...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/150565 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this work the photophysics of poly(3-hexylthiophene) nanoparticles (NPs) is investigated in the context of their biological applications. The NPs, made as colloidal suspensions in aqueous buffers, present a distinct absorption band in the low-energy region. On the basis of systematic analysis of absorption and transient absorption (TA) spectra taken under different pH conditions, this band is associated with charge-transfer states generated by the polarization of loosely bound polymer chains and originating from complexes formed with electron-withdrawing species. Importantly, the ground-state depletion of these states upon photoexcitation is active even on microsecond timescales, thus suggesting that they act as precursor states for long-living polarons; this could be beneficial for cellular stimulation. Preliminary transient absorption microscopy results for NPs internalized within the cells reveal the presence of long-living species, further substantiating their relevance in biointerfaces. |
---|