Optical microfluidic waveguides and solution lasers of colloidal semiconductor quantum wells

The realization of high-quality lasers in microfluidic devices is crucial for numerous applications, including biological and chemical sensors and flow cytometry, and the development of advanced lab-on-chip (LOC) devices. Herein, an ultralow-threshold microfluidic single-mode laser is proposed and d...

Full description

Saved in:
Bibliographic Details
Main Authors: Maskoun, Joudi, Gheshlaghi, Negar, Isik, Furkan, Delikanli, Savas, Erdem, Onur, Erdem, Emine Yegan, Demir, Hilmi Volkan
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150588
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The realization of high-quality lasers in microfluidic devices is crucial for numerous applications, including biological and chemical sensors and flow cytometry, and the development of advanced lab-on-chip (LOC) devices. Herein, an ultralow-threshold microfluidic single-mode laser is proposed and demonstrated using an on-chip cavity. CdSe/CdS@Cdx Zn1-x S core/crown@gradient-alloyed shell colloidal semiconductor quantum wells (CQWs) dispersed in toluene are employed in the cavity created inside a poly(dimethylsiloxane) (PDMS) microfluidic device using SiO2 -protected Ag mirrors to achieve in-solution lasing. Lasing from such a microfluidic device having CQWs solution as a microfluidic gain medium is shown for the first time with a record-low optical gain threshold of 17.1 µJ cm- ² and lasing threshold of 68.4 µJ cm- ² among all solution-based lasing demonstrations. In addition, air-stable SiO2 protected Ag films are used and designed to form highly tunable and reflective mirrors required to attain a high-quality Fabry-Pérot cavity. These realized record-low thresholds emanate from the high-quality on-chip cavity together with the core/crown@gradient-alloyed shell CQWs having giant gain cross-section and slow Auger rates. This microfabricated CQW laser provides a compact and inexpensive coherent light source for microfluidics and integrated optics covering the visible spectral region.