Autogenous healing of fiber-reinforced reactive magnesia-based tensile strain-hardening composites

Reactive magnesia-based cement (RMC) is an emerging group of alternative binder to Portland cement. Recently, the first fiber-reinforced RMC-based strain-hardening composites (SHC) have been developed by the authors. The current work investigated the feasibility of the PC-free RMC-based SHC formulat...

全面介紹

Saved in:
書目詳細資料
Main Authors: Qiu, Jishen, Ruan, Shaoqin, Unluer, Cise, Yang, En-Hua
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2021
主題:
MgO
在線閱讀:https://hdl.handle.net/10356/150632
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Reactive magnesia-based cement (RMC) is an emerging group of alternative binder to Portland cement. Recently, the first fiber-reinforced RMC-based strain-hardening composites (SHC) have been developed by the authors. The current work investigated the feasibility of the PC-free RMC-based SHC formulations to engage autogenous healing. Results showed that crack sealing and significant mechanical recovery can be realized through proper environmental conditioning. The presence of water is necessary to engage autogenous healing and elevated CO2 concentration leads to the formation of HMCs that can seal larger crack. However, ample supply of CO2 results in fast sealing of crack on the near surface region, which blocks the pathway for further carbonation and healing of interior region of cracks. Microstructure analysis reveals that the healing products are hydrated magnesium carbonates (HMCs) and different conditioning regimes lead to different types of HMCs as the healing products.