Non-parametric probabilistic load flow using Gaussian process learning
The load flow problem is fundamental to characterize the equilibrium behavior of a power system. Uncertain power injections such as those due to demand variations and intermittent renewable resources will change the system's equilibrium unexpectedly, and thus potentially jeopardizing the system...
Saved in:
Main Authors: | Pareek, Parikshit, Wang, Chuan, Nguyen, Hung Dinh |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/150720 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Probabilistic robust small-signal stability framework using gaussian process learning
由: Pareek, Parikshit, et al.
出版: (2021) -
A framework for analytical power flow solution using Gaussian process learning
由: Pareek, Parikshit, et al.
出版: (2021) -
Optimal steady-state voltage control using Gaussian process learning
由: Pareek, Parikshit, et al.
出版: (2021) -
Non-parametric joint chance-constrained OPF via maximum mean discrepancy penalization
由: Pareek, Parikshit, et al.
出版: (2022) -
Gaussian Process Learning-based Probabilistic Optimal Power Flow
由: Pareek, Parikshit, et al.
出版: (2021)