Gaussian Process Learning-based Probabilistic Optimal Power Flow
In this letter, we present a novel Gaussian Process Learning-based Probabilistic Optimal Power Flow (GP-POPF) for solving POPF under renewable and load uncertainties of arbitrary distribution. The proposed method relies on a non-parametric Bayesian inference-based uncertainty propagation approach, c...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/150725 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | In this letter, we present a novel Gaussian Process Learning-based Probabilistic Optimal Power Flow (GP-POPF) for solving POPF under renewable and load uncertainties of arbitrary distribution. The proposed method relies on a non-parametric Bayesian inference-based uncertainty propagation approach, called Gaussian Process (GP). We also suggest a new type of sensitivity called Subspace-wise Sensitivity, using observations on the interpretability of GP-POPF hyperparameters. The simulation results on 14-bus and 30-bus systems show that the proposed method provides reasonably accurate solutions when compared with Monte-Carlo Simulations (MCS) solutions at different levels of uncertain renewable penetration and load uncertainties. The proposed method requires a lesser number of samples and elapsed time. The non-parametric nature of the proposed method is manifested by testing uncertain injections that follow various distributions in the 118-bus system. The low error value results verify the proposed method's capability of working with different types of input uncertainty distributions. |
---|