Rapid and controllable design of robust superwettable microchips by a click reaction for efficient o-phthalaldehyde and glucose detection
Superwettable patterns with superhydrophobic and superhydrophilic units have the capacity of enriching and absorbing microdroplets for multifunctional biosensing. Combining the advantages of superwettable micropatterns and a rapid click reaction, we first prepared a film using propargyl methacrylate...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/150778 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Superwettable patterns with superhydrophobic and superhydrophilic units have the capacity of enriching and absorbing microdroplets for multifunctional biosensing. Combining the advantages of superwettable micropatterns and a rapid click reaction, we first prepared a film using propargyl methacrylate–ethylene dimethacrylate and then created a superhydrophobic–superhydrophilic micropattern by a rapid thiol–yne click reaction. Due to the high wettability contrast, water droplets tend to be anchored in the superhydrophilic region. Molecules dissolved in a water droplet are therefore uniformly enriched in the superhydrophilic region after evaporation because of the Malangoni effect. This provides a rational strategy to develop novel patterned microchips for sensing applications. Combining with fluorescence imaging technology, the Ti superwettable microchip can be used to detect o-phthalaldehyde in water, with a detection limit as low as 10–7 mol L–1. In addition, taking advantage of the oxidative color rendering ability of glucose, the microchip, when fabricated on a glass substrate, can realize reuseable glucose detection with a detection limit of 2 mM within 15 min. |
---|