Nanostructuring confinement for controllable interfacial charge transfer

Carbon nanostructures supported semiconductors are common in photocatalytic and photoelectrochemical applications, as it is expected that the nanoconductors can improve the spatial separation and transport of photogenerated charge carriers. Transfer of charge carriers through the carbon-semiconducto...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiao, Wei, Tao, Hua Bing, Liu, Bin, Chen, Jiazang
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150835
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Carbon nanostructures supported semiconductors are common in photocatalytic and photoelectrochemical applications, as it is expected that the nanoconductors can improve the spatial separation and transport of photogenerated charge carriers. Transfer of charge carriers through the carbon-semiconductor interface is the key electronic process, which determines the role of charge separation channels, and is sensitively influenced by band structures of the semiconductor near the contacts. Usually, this electronic process suffers from excessive energy dissipation by thermionic emission, which will undesirably prevent the interfacial charge transfer and eventually aggravate the recombination of photogenerated charge carriers. Unfortunately, this critical issue has hardly been consciously considered. Here, ultrathin dopant-free tunneling interlayers coated on the surface of graphene and sandwiched between the carbon sheets and the semiconductor nanostructures are adopted as a model system to demonstrate energy saving for the interfacial charge transfer. The nanostructuring confinement of band bending within the ultrathin interlayers in contact with the graphene sheets effectively narrows the width of the potential barriers, which enables tunneling of a substantial number of photogenerated electrons to the co-catalysts without unduly consuming energy. Besides, the dopant-free tunneling interlayers simultaneously block the transferred electrons in the sandwiched graphene sheets from leakage.