Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability

Laser Metal Deposition is an additive manufacturing technique that is well-known for producing near-net-shape components with intricate geometries. However, a prevalent issue is its low powder usage efficiency, for which a substantial amount of blown powder is undeposited and disposed after. A poten...

Full description

Saved in:
Bibliographic Details
Main Author: Han, Wen Siew
Other Authors: Matteo Seita
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150850
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-150850
record_format dspace
spelling sg-ntu-dr.10356-1508502021-06-03T03:43:32Z Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability Han, Wen Siew Matteo Seita School of Mechanical and Aerospace Engineering Advanced Remanufacturing and Technology Centre Davide Verdi Yang Shanshan mseita@ntu.edu.sg, davide_verdi@artc.a-star.edu.sg, yangs@artc.a-star.edu.sg Engineering::Materials::Material testing and characterization Engineering::Mechanical engineering Laser Metal Deposition is an additive manufacturing technique that is well-known for producing near-net-shape components with intricate geometries. However, a prevalent issue is its low powder usage efficiency, for which a substantial amount of blown powder is undeposited and disposed after. A potential solution to this problem is to reuse the collected powder, in order to reduce costs and mitigate the detrimental impact to the environment. However, there are concerns that the integrity of the fabricated build may be compromised due to possible contamination of the powder, which in turn affects its properties. Therefore, the primary objectives of this project were to study the reusability of Ti-6Al-4V Grade 23 powder in an LMD process and the environmental sustainability of powder reuse. A total of three cycles of build fabrication was conducted, with the use of virgin powder for the first cycle, and reusable powder collected from the previous cycle for subsequent cycles. Characterisation tests were conducted on the powder and builds from every cycle for analysis. For the sustainability analysis, the raw power usage, embodied energy, CO2) footprint and water usage were used as measures for the environmental performance. The results showed that the average porosity of the builds decreased across the cycles, which suggested that the integrity of the builds was not compromised. The chemical composition and flowability of the powder were not significantly affected despite reusing it for Cycles 2 and 3. There was no observable trend in the porosity of the powder across the cycles. It was noted that the powder from Cycle 3 had an exceptionally higher porosity level. The environmental sustainability analysis showed that there was significant amount of savings if the powder was reused, therefore promoting powder reuse in LMD as a sustainable measure in the long run. Bachelor of Engineering (Mechanical Engineering) 2021-06-03T03:43:32Z 2021-06-03T03:43:32Z 2021 Final Year Project (FYP) Han, W. S. (2021). Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/150850 https://hdl.handle.net/10356/150850 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Materials::Material testing and characterization
Engineering::Mechanical engineering
spellingShingle Engineering::Materials::Material testing and characterization
Engineering::Mechanical engineering
Han, Wen Siew
Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability
description Laser Metal Deposition is an additive manufacturing technique that is well-known for producing near-net-shape components with intricate geometries. However, a prevalent issue is its low powder usage efficiency, for which a substantial amount of blown powder is undeposited and disposed after. A potential solution to this problem is to reuse the collected powder, in order to reduce costs and mitigate the detrimental impact to the environment. However, there are concerns that the integrity of the fabricated build may be compromised due to possible contamination of the powder, which in turn affects its properties. Therefore, the primary objectives of this project were to study the reusability of Ti-6Al-4V Grade 23 powder in an LMD process and the environmental sustainability of powder reuse. A total of three cycles of build fabrication was conducted, with the use of virgin powder for the first cycle, and reusable powder collected from the previous cycle for subsequent cycles. Characterisation tests were conducted on the powder and builds from every cycle for analysis. For the sustainability analysis, the raw power usage, embodied energy, CO2) footprint and water usage were used as measures for the environmental performance. The results showed that the average porosity of the builds decreased across the cycles, which suggested that the integrity of the builds was not compromised. The chemical composition and flowability of the powder were not significantly affected despite reusing it for Cycles 2 and 3. There was no observable trend in the porosity of the powder across the cycles. It was noted that the powder from Cycle 3 had an exceptionally higher porosity level. The environmental sustainability analysis showed that there was significant amount of savings if the powder was reused, therefore promoting powder reuse in LMD as a sustainable measure in the long run.
author2 Matteo Seita
author_facet Matteo Seita
Han, Wen Siew
format Final Year Project
author Han, Wen Siew
author_sort Han, Wen Siew
title Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability
title_short Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability
title_full Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability
title_fullStr Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability
title_full_unstemmed Powder reuse in laser metal deposition phase III - part 2 : feasibility and sustainability
title_sort powder reuse in laser metal deposition phase iii - part 2 : feasibility and sustainability
publisher Nanyang Technological University
publishDate 2021
url https://hdl.handle.net/10356/150850
_version_ 1702431303171833856