Constructions of optimal binary locally recoverable codes via a general construction of linear codes

Locally recoverable codes play a crucial role in distributed storage systems. Many studies have only focused on the constructions of optimal locally recoverable codes with regard to the Singleton bound. The aim of this paper is to construct optimal binary locally recoverable codes meeting the al...

Full description

Saved in:
Bibliographic Details
Main Authors: Luo, Gaojun, Cao, Xiwang
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150945
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Locally recoverable codes play a crucial role in distributed storage systems. Many studies have only focused on the constructions of optimal locally recoverable codes with regard to the Singleton bound. The aim of this paper is to construct optimal binary locally recoverable codes meeting the alphabetdependent bound. Using a general framework for linear codes associated to a set, we provide a new approach to constructing binary locally recoverable codes with locality 2. We turn the problem of designing optimal binary locally recoverable codes into constructing a suitable set. Several constructions of optimal binary locally recoverable codes are proposed by this new method. Finally, we propose constructions of optimal binary locally recoverable codes with locality 2 and locality parameters $(r,\delta)$ by Griesmer codes.