Structure-aware generation network for recipe generation from images

Sharing food has become very popular with the development of social media. For many real-world applications, people are keen to know the underlying recipes of a food item. In this paper, we are interested in automatically generating cooking instructions for food. We investigate an open research task...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Hao, Lin, Guosheng, Hoi, Steven C. H., Miao, Chunyan
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150963
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Sharing food has become very popular with the development of social media. For many real-world applications, people are keen to know the underlying recipes of a food item. In this paper, we are interested in automatically generating cooking instructions for food. We investigate an open research task of generating cooking instructions based on only food images and ingredients, which is similar to the image captioning task. However, compared with image captioning datasets, the target recipes are long-length paragraphs and do not have annotations on structure information. To address the above limitations, we propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task. Our approach brings together several novel ideas in a systematic framework: (1) exploiting an unsupervised learning approach to obtain the sentence-level tree structure labels before training; (2) generating trees of target recipes from images with the supervision of tree structure labels learned from (1); and (3) integrating the inferred tree structures with the recipe generation procedure. Our proposed model can produce high-quality and coherent recipes, and achieve the state-of-the-art performance on the benchmark Recipe1M dataset.