Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures
This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/150976 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-150976 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1509762021-07-29T12:27:59Z Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures Gho, Wie Min Yang, Ye School of Civil and Environmental Engineering Engineering::Maritime studies Offshore Wind Turbine Jacket Substructure This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement, the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing. Nanyang Technological University This paper constitutes part of the PhD work of Dr. Yang Ye, who was sponsored by the Nanyang Technological University of Singapore. 2021-07-29T12:27:59Z 2021-07-29T12:27:59Z 2019 Journal Article Gho, W. M. & Yang, Y. (2019). Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures. Journal of Marine Science and Application, 18(1), 99-113. https://dx.doi.org/10.1007/s11804-019-00074-w 1671-9433 https://hdl.handle.net/10356/150976 10.1007/s11804-019-00074-w 2-s2.0-85062686368 1 18 99 113 en Journal of Marine Science and Application © 2019 Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Maritime studies Offshore Wind Turbine Jacket Substructure |
spellingShingle |
Engineering::Maritime studies Offshore Wind Turbine Jacket Substructure Gho, Wie Min Yang, Ye Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
description |
This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement, the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Gho, Wie Min Yang, Ye |
format |
Article |
author |
Gho, Wie Min Yang, Ye |
author_sort |
Gho, Wie Min |
title |
Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
title_short |
Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
title_full |
Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
title_fullStr |
Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
title_full_unstemmed |
Ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
title_sort |
ultimate strength of completely overlapped joint for fixed offshore wind turbine jacket substructures |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/150976 |
_version_ |
1707050407668219904 |