Higher-order interference between multiple quantum particles interacting nonlinearly

The double-slit experiment is the most direct demonstration of interference between individual quantum objects. Since similar experiments with single particles and more slits produce interference fringes reducible to a combination of double-slit patterns, it is usually argued that quantum interferen...

全面介紹

Saved in:
書目詳細資料
Main Authors: Rozema, Lee A., Zhuo, Zhao, Paterek, Tomasz, Dakić, Borivoje
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/151089
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The double-slit experiment is the most direct demonstration of interference between individual quantum objects. Since similar experiments with single particles and more slits produce interference fringes reducible to a combination of double-slit patterns, it is usually argued that quantum interference occurs between pairs of trajectories, compactly denoted as second-order interference. Here we show that quantum mechanics in fact allows for interference of arbitrarily high order. This occurs naturally when one considers multiple quantum objects interacting in the presence of a nonlinearity, both of which are required to observe higher-order interference. We make this clear by treating a generalized multislit interferometer using second quantization. We then present explicit experimentally relevant examples both with photons interacting in nonlinear media and an interfering Bose-Einstein condensate with particle-particle interactions. These examples are all perfectly described by quantum theory, and yet exhibit higher-order interference based on multiple particles interacting nonlinearly.