High coercivity Dy substituted Nd-Fe-Co-B magnetic nanoparticles produced by mechanochemical processing
(Nd1-xDyx)2(Fe,Co)14B magnetic nanoparticles, in a range of Dy content from 0 to 0.6, were synthesized by a mechanochemical process. The influence of Dy substitution on the crystal structure and magnetic properties were studied. With increasing Dy content, the coercivity of (Nd1-xDyx)2(Fe,Co)14B par...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/151092 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | (Nd1-xDyx)2(Fe,Co)14B magnetic nanoparticles, in a range of Dy content from 0 to 0.6, were synthesized by a mechanochemical process. The influence of Dy substitution on the crystal structure and magnetic properties were studied. With increasing Dy content, the coercivity of (Nd1-xDyx)2(Fe,Co)14B particles first doubled from 8.8 kOe (x = 0) to a high value of 17.8 kOe (x = 0.5), further increase of Dy content led to a slightly lower coercivity of 17.5 kOe (x = 0.6).(Nd0.8Dy0.2)2(Fe,Co)14B particles exhibited good thermal stability, with a thermal coefficient of remanence (α) of -0.053% and thermal coefficient of coercivity (β) of -0.348%. Reduced spin-reorientation temperatures (TSR) of 105 K – 115 K were observed for (Nd1-xDyx)2(Fe,Co)14B, for x in the range of 0 to 0.2, making these compositions more attractive for cryogenic applications. Detailed analysis of the temperature dependent magnetic properties revealed that coercivity was controlled by nucleation of reversed magnetic domains. |
---|