Cognitive-inspired domain adaptation of sentiment lexicons

Sentiment lexicons are essential tools for polarity classification and opinion mining. In contrast to machine learning methods that only leverage text features or raw text for sentiment analysis, methods that use sentiment lexicons embrace higher interpretability. Although a number of domain-specifi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Xing, Frank Z., Pallucchini, Filippo, Cambria, Erik
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/151125
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Sentiment lexicons are essential tools for polarity classification and opinion mining. In contrast to machine learning methods that only leverage text features or raw text for sentiment analysis, methods that use sentiment lexicons embrace higher interpretability. Although a number of domain-specific sentiment lexicons are made available, it is impractical to build an ex ante lexicon that fully reflects the characteristics of the language usage in endless domains. In this article, we propose a novel approach to simultaneously train a vanilla sentiment classifier and adapt word polarities to the target domain. Specifically, we sequentially track the wrongly predicted sentences and use them as the supervision instead of addressing the gold standard as a whole to emulate the life-long cognitive process of lexicon learning. An exploration-exploitation mechanism is designed to trade off between searching for new sentiment words and updating the polarity score of one word. Experimental results on several popular datasets show that our approach significantly improves the sentiment classification performance for a variety of domains by means of improving the quality of sentiment lexicons. Case-studies also illustrate how polarity scores of the same words are discovered for different domains.