Cognitive-inspired domain adaptation of sentiment lexicons
Sentiment lexicons are essential tools for polarity classification and opinion mining. In contrast to machine learning methods that only leverage text features or raw text for sentiment analysis, methods that use sentiment lexicons embrace higher interpretability. Although a number of domain-specifi...
Saved in:
Main Authors: | Xing, Frank Z., Pallucchini, Filippo, Cambria, Erik |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/151125 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Sentix: An aspect and domain sensitive sentiment lexicon
由: Lek, H.H., et al.
出版: (2014) -
Lexicons in sentiment analytics
由: YUAN, B., et al.
出版: (2017) -
Feature ensemble plus sample selection: Domain adaptation for sentiment classification
由: Xia, R., et al.
出版: (2014) -
Lexicon knowledge extraction with sentiment polarity computation
由: WANG, Zhaoxia, et al.
出版: (2016) -
Soft labeling constraint for generalizing from sentiments in single domain
由: Roy, Abhinaba, et al.
出版: (2022)