Disentangled variational auto-encoder for semi-supervised learning

Semi-supervised learning is attracting increasing attention due to the fact that datasets of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particular, has demonstrated the benefits of semi-supervised learning. The majority of existing semi-supervised VAEs utilize a classi...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Yang, Pan, Quan, Wang, Suhang, Peng, Haiyun, Yang, Tao, Cambria, Erik
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/151222
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Semi-supervised learning is attracting increasing attention due to the fact that datasets of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particular, has demonstrated the benefits of semi-supervised learning. The majority of existing semi-supervised VAEs utilize a classifier to exploit label information, where the parameters of the classifier are introduced to the VAE. Given the limited labeled data, learning the parameters for the classifiers may not be an optimal solution for exploiting label information. Therefore, in this paper, we develop a novel approach for semi-supervised VAE without classifier. Specifically, we propose a new model called Semi-supervised Disentangled VAE (SDVAE), which encodes the input data into disentangled representation and non-interpretable representation, then the category information is directly utilized to regularize the disentangled representation via the equality constraint. To further enhance the feature learning ability of the proposed VAE, we incorporate reinforcement learning to relieve the lack of data. The dynamic framework is capable of dealing with both image and text data with its corresponding encoder and decoder networks. Extensive experiments on image and text datasets demonstrate the effectiveness of the proposed framework.