The spatially-correlative loss for various image translation tasks
We propose a novel spatially-correlative loss that is simple, efficient and yet effective for preserving scene structure consistency while supporting large appearance changes during unpaired image-to-image (I2I) translation. Previous methods attempt this by using pixel-level cycle-consistency or fea...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/151225 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We propose a novel spatially-correlative loss that is simple, efficient and yet effective for preserving scene structure consistency while supporting large appearance changes during unpaired image-to-image (I2I) translation. Previous methods attempt this by using pixel-level cycle-consistency or feature-level matching losses, but the domain-specific nature of these losses hinder translation across large domain gaps. To address this, we exploit the spatial patterns of self-similarity as a means of defining scene structure. Our spatially-correlative loss is geared towards only capturing spatial relationships within an image rather than domain appearance. We also introduce a new self-supervised learning method to explicitly learn spatially-correlative maps for each specific translation task. We show distinct improvement over baseline models in all three modes of unpaired I2I translation: single-modal, multi-modal, and even single-image translation. This new loss can easily be integrated into existing network architectures and thus allows wide applicability. |
---|