Task-generic semantic convolutional neural network for web text-aided image classification

In this work, we explore how to use external and auxiliary web text to improve image classification. The keystone of web text-aided image classification is the representation learning for these two modalities of data. In the recent decade, convolutional neural networks (CNN) as the core representati...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Dongzhe, Mao, Kezhi
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/151327
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this work, we explore how to use external and auxiliary web text to improve image classification. The keystone of web text-aided image classification is the representation learning for these two modalities of data. In the recent decade, convolutional neural networks (CNN) as the core representation methods of images have become a commodity in computer vision community. On the other hand, the long reign of word vectors has the same wide-ranging impact on NLP for representation learning. Based on the pre-trained word vectors, we propose a novel semantic CNN (s-CNN) model for high-level text representation learning using task-generic semantic filters. However, the s-CNN model inevitably brings about surplus semantic filters to achieve better applicability and generalization in universal tasks. Moreover, the surplus filters may lead to semantic overlaps and feature redundancy issue. To address this issue, we develop the so-called s-CNN Clustered (s-CNNC) models that uses filter clusters instead of individual filters. Interacting with the image CNN models, the s-CNNC models can further boost image classification under a multi-modal framework (mm-CNN). In addition, we propose to use the external text information selectively in the mm-CNN network to alleviate the noise problem inherent in web text. We validate the effectiveness of the proposed models on six benchmark datasets, and the results show that our approaches achieve remarkable improvements.