Chemical vapor deposition of superconducting FeTe1-xSex nanosheets
FeTe1-xSe x, a promising layered material used to realize Majorana zero modes, has attracted enormous attention in recent years. Pulsed laser deposition (PLD) and molecular-beam epitaxy (MBE) are the routine growth methods used to prepare FeTe1-xSexthin films. However, both methods require high-vacu...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/151394 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | FeTe1-xSe x, a promising layered material used to realize Majorana zero modes, has attracted enormous attention in recent years. Pulsed laser deposition (PLD) and molecular-beam epitaxy (MBE) are the routine growth methods used to prepare FeTe1-xSexthin films. However, both methods require high-vacuum conditions and polished crystalline substrates, which hinder the exploration of the topological superconductivity and related nanodevices of this material. Here we demonstrate the growth of the ultrathin FeTe1-xSex superconductor by a facile, atmospheric pressure chemical vapor deposition (CVD) method. The composition and thickness of the two-dimensional (2D) FeTe1-xSex nanosheets are well controlled by tuning the experimental conditions. The as-prepared FeTe0.8Se0.2 nanosheet exhibits an onset superconducting transition temperature of 12.4 K, proving its high quality. Our work offers an effective strategy for preparing the ultrathin FeTe1-xSex superconductor, which could become a promising platform for further study of the unconventional superconductivity in the FeTe1-xSex system. |
---|