Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties

A secondary cation insertion technique to fabricate ternary Bi₂MoO₆ thin films with reduced optical band gaps and shallow valence bands by the controllable insertion of Bi³⁺ cations into anodized MoO₃ thin films has been established. Near-complete conversion of the MoO₃ thin film to a low-temperatur...

Full description

Saved in:
Bibliographic Details
Main Authors: Lou, Shi Nee, Amal, Rose, Scott, Jason, Ng, Yun Hau
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/151595
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-151595
record_format dspace
spelling sg-ntu-dr.10356-1515952021-06-28T07:27:32Z Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties Lou, Shi Nee Amal, Rose Scott, Jason Ng, Yun Hau School of Materials Science and Engineering Engineering::Materials Bi₂MoO₆ Solar Energy Conversion A secondary cation insertion technique to fabricate ternary Bi₂MoO₆ thin films with reduced optical band gaps and shallow valence bands by the controllable insertion of Bi³⁺ cations into anodized MoO₃ thin films has been established. Near-complete conversion of the MoO₃ thin film to a low-temperature-phase γ(L)-Bi₂MoO₆ thin film was achieved when the MoO₃ thin films were subject to hydrothermal treatment in a low Bi(NO₃)3·5H₂O solution concentration. In contrast, a bilayered Bi₂MoO₆/MoO₃ thin film photoelectrode comprising predominantly a high-temperature-phase γ(H)-Bi₂MoO₆ oxide-electrolyte interface top region and a MoO₃ oxide-collector interface bottom region was formed when a high Bi(NO₃)3·5H₂O solution concentration was utilized. UV-vis spectroscopy shows both the γ(L)-Bi₂MoO₆ (Eg = 2.7 eV) and γ(H)-Bi₂MoO₆ (Eg = 3.05 eV) thin films exhibit smaller band gaps than MoO₃ (Eg = 3.4 eV). For γ(L)-Bi₂MoO₆, the reduction in optical band gap was attributed to the formation of a higher-lying O 2p valence band maximum while, for the γ(H)-Bi₂MoO₆ thin film, hybridization of the Bi 6s orbitals with the O 2p valence orbitals lowers the potential of the valence band maximum, leading to the reduced band gap. Overall, the Bi₂MoO₆ thin films with the highest γ(L)-Bi₂MoO₆ concentration exhibited the highest photocurrent density. The photocurrent enhancement can be attributed to two main reasons: first, the trilayer Bi₂MoO₆/MoO₃ heterostructure obtained from the direct thin film assembly enables a smooth percolation of photoexcited charges from the surface generation sites to the charge collection sites at the Mo substrate, minimizing charge recombination losses; second, the MoO₆ octahedra-coordinated γ(L)-Bi₂MoO₆ possesses a wide conduction band enabling fast separation and migration of delocalized charges. The secondary cation insertion technique has potential as a universal method to prepare complex oxides with narrow band gaps and shallow valence bands from insertion-type oxides for solar energy applications. This work was financially supported by the Australian Research Council under the Laureate Fellowship Scheme - FL140100081. 2021-06-28T07:27:31Z 2021-06-28T07:27:31Z 2018 Journal Article Lou, S. N., Amal, R., Scott, J. & Ng, Y. H. (2018). Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties. ACS Applied Energy Materials, 1(8), 3955-3964. https://dx.doi.org/10.1021/acsaem.8b00675 2574-0962 0000-0001-9561-4918 0000-0003-2395-2058 0000-0001-9142-2126 https://hdl.handle.net/10356/151595 10.1021/acsaem.8b00675 2-s2.0-85064760580 8 1 3955 3964 en ACS Applied Energy Materials © 2018 American Chemical Society. All rights reserved.
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Materials
Bi₂MoO₆
Solar Energy Conversion
spellingShingle Engineering::Materials
Bi₂MoO₆
Solar Energy Conversion
Lou, Shi Nee
Amal, Rose
Scott, Jason
Ng, Yun Hau
Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties
description A secondary cation insertion technique to fabricate ternary Bi₂MoO₆ thin films with reduced optical band gaps and shallow valence bands by the controllable insertion of Bi³⁺ cations into anodized MoO₃ thin films has been established. Near-complete conversion of the MoO₃ thin film to a low-temperature-phase γ(L)-Bi₂MoO₆ thin film was achieved when the MoO₃ thin films were subject to hydrothermal treatment in a low Bi(NO₃)3·5H₂O solution concentration. In contrast, a bilayered Bi₂MoO₆/MoO₃ thin film photoelectrode comprising predominantly a high-temperature-phase γ(H)-Bi₂MoO₆ oxide-electrolyte interface top region and a MoO₃ oxide-collector interface bottom region was formed when a high Bi(NO₃)3·5H₂O solution concentration was utilized. UV-vis spectroscopy shows both the γ(L)-Bi₂MoO₆ (Eg = 2.7 eV) and γ(H)-Bi₂MoO₆ (Eg = 3.05 eV) thin films exhibit smaller band gaps than MoO₃ (Eg = 3.4 eV). For γ(L)-Bi₂MoO₆, the reduction in optical band gap was attributed to the formation of a higher-lying O 2p valence band maximum while, for the γ(H)-Bi₂MoO₆ thin film, hybridization of the Bi 6s orbitals with the O 2p valence orbitals lowers the potential of the valence band maximum, leading to the reduced band gap. Overall, the Bi₂MoO₆ thin films with the highest γ(L)-Bi₂MoO₆ concentration exhibited the highest photocurrent density. The photocurrent enhancement can be attributed to two main reasons: first, the trilayer Bi₂MoO₆/MoO₃ heterostructure obtained from the direct thin film assembly enables a smooth percolation of photoexcited charges from the surface generation sites to the charge collection sites at the Mo substrate, minimizing charge recombination losses; second, the MoO₆ octahedra-coordinated γ(L)-Bi₂MoO₆ possesses a wide conduction band enabling fast separation and migration of delocalized charges. The secondary cation insertion technique has potential as a universal method to prepare complex oxides with narrow band gaps and shallow valence bands from insertion-type oxides for solar energy applications.
author2 School of Materials Science and Engineering
author_facet School of Materials Science and Engineering
Lou, Shi Nee
Amal, Rose
Scott, Jason
Ng, Yun Hau
format Article
author Lou, Shi Nee
Amal, Rose
Scott, Jason
Ng, Yun Hau
author_sort Lou, Shi Nee
title Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties
title_short Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties
title_full Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties
title_fullStr Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties
title_full_unstemmed Concentration-mediated band gap reduction of Bi₂MoO₆ photoanodes prepared by Bi³⁺ cation insertions into anodized MoO₃ thin films : structural, optical, and photoelectrochemical properties
title_sort concentration-mediated band gap reduction of bi₂moo₆ photoanodes prepared by bi³⁺ cation insertions into anodized moo₃ thin films : structural, optical, and photoelectrochemical properties
publishDate 2021
url https://hdl.handle.net/10356/151595
_version_ 1703971233897381888