Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy
Real-time imaging of immunoactivation is imperative for cancer immunotherapy and drug discovery; however, most existing imaging agents possess "always-on" signals and thus have poor signal correlation with immune responses. Herein, renal-clearable near-infrared (NIR) fluorescent macromolec...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/151901 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Real-time imaging of immunoactivation is imperative for cancer immunotherapy and drug discovery; however, most existing imaging agents possess "always-on" signals and thus have poor signal correlation with immune responses. Herein, renal-clearable near-infrared (NIR) fluorescent macromolecular reporters are synthesized to specifically detect an immunoactivation-related biomarker (granzyme B) for real-time evaluation of cancer immunotherapy. Composed of a peptide-caged NIR signaling moiety linked with a hydrophilic poly(ethylene glycol) (PEG) passivation chain, the reporters not only specifically activate their fluorescence by granzyme B but also passively target the tumor of living mice after systemic administration. Such granzyme B induced in vivo signals of the reporters are validated to correlate well with the populations of cytotoxic T lymphocytes (CD8⁺) and T helper (CD4⁺) cells detected in tumor tissues. By virtue of their ideal renal clearance efficiency (60% injected doses at 24 h postinjection), the reporters can be used for optical urinalysis of immunoactivation simply by detecting the status of excreted reporters. This study thus proposes a molecular optical imaging approach for noninvasive evaluation of cancer immunotherapeutic efficacy in living animals. |
---|