Feature analysis of marginalized stacked denoising autoenconder for unsupervised domain adaptation
Marginalized stacked denoising autoencoder (mSDA), has recently emerged with demonstrated effectiveness in domain adaptation. In this paper, we investigate the rationale for why mSDA benefits domain adaptation tasks from the perspective of adaptive regularization. Our investigations focus on two typ...
Saved in:
Main Authors: | Wei, Pengfei, Ke, Yiping, Goh, Chi Keong |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/151969 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
DEVDAN: Deep evolving denoising autoencoder
由: Ashfahani, Andri, et al.
出版: (2022) -
Robust motion planning for multi-robot systems against position deception attacks
由: Tang, Wenbing, et al.
出版: (2024) -
A general domain specific feature transfer framework for hybrid domain adaptation
由: Wei, Pengfei, et al.
出版: (2020) -
Multichannel PPG signal denoising and heart rate estimation
由: Lin, Mingyi
出版: (2025) -
SURVEY OF DEEP NEURAL NETWORKS IN BLIND DENOISING USING DIFFERENT ARCHITECTURES AND DIFFERENT LABELS
由: LOO TIANG KUAN, LEONARD
出版: (2017)