Feature analysis of marginalized stacked denoising autoenconder for unsupervised domain adaptation

Marginalized stacked denoising autoencoder (mSDA), has recently emerged with demonstrated effectiveness in domain adaptation. In this paper, we investigate the rationale for why mSDA benefits domain adaptation tasks from the perspective of adaptive regularization. Our investigations focus on two typ...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Wei, Pengfei, Ke, Yiping, Goh, Chi Keong
مؤلفون آخرون: School of Computer Science and Engineering
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/151969
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English