Characterization of nano-layered solid-contact ion selective electrodes by simultaneous potentiometry and quartz crystal microbalance with dissipation

Nano-layered solid-contact potassium-selective electrodes (K⁺-ISEs) were explored as model ion-selective electrodes for their practical use in clinical analysis. The ultra-thin ISEs ought to be manufactured in a highly reproducible manner, potentially making them suitable for mass production. Thus,...

Full description

Saved in:
Bibliographic Details
Main Authors: Krikstolaityte, Vida, Ding, Ruiyu, Ruzgas, Tautgirdas, Björklund, Sebastian, Lisak, Grzegorz
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/152051
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Nano-layered solid-contact potassium-selective electrodes (K⁺-ISEs) were explored as model ion-selective electrodes for their practical use in clinical analysis. The ultra-thin ISEs ought to be manufactured in a highly reproducible manner, potentially making them suitable for mass production. Thus, their development is pivotal towards miniaturised sensors with simplified conditioning/calibration protocols for point-of-care diagnostics. To study nano-layered ISEs, the ultra-thin nature of ISEs for the first time enabled to combine potentiometry-quartz crystal microbalance with dissipation (QCM-D) to obtain value-added information on the ISE potentiometric response regarding their physical state such as mass/thickness/viscoelastic properties/structural homogeneity. Specifically, the studies were focused on real-time observations of the ISE potentiometric response in relation to changes of their physicochemical properties during the ISE preparation (conditioning) and operation (including biofouling conditions) to identify the occurring processes that may accordingly be critical for potential instability of the ISEs, impeding their practical application. The K⁺-ISEs were prepared on a QCM-D gold sensor by electrodepositing poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) layer serving as an ion-to-electron transducer subsequently covered by a spin-coated poly(vinyl chloride) based K⁺-ion selective membrane (K⁺-ISM). The studies demonstrated that the performance of the nano-layered design of K⁺-ISEs is detrimentally affected by such processes as water layer formation accordingly causing the instability of the electrode potential. The changes in the ISE physical state such mass/viscoelastic properties associated with water layer formation and origin of the potential instability was already observed at the ISE conditioning stage. The potential instability of nano-layered ISEs limits their practical applicability, indicating the need of new solutions in designing ISEs, for instance, exploiting new water-resistant materials and modifying preparation protocols.