Homogenization of a multiscale multi-continuum system
We study homogenization of a locally periodic two-scale dual-continuum system where each continuum interacts with the other. Equations for each continuum are written separately with interaction terms added. The homogenization limit depends strongly on the scale of this continuum interaction term wit...
Saved in:
Main Authors: | Park, Richard Jun Sur, Hoang, Viet Ha |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/152057 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Multiscale methods : averaging and homogenization
由: Pavliotis, Grigorios A., et al.
出版: (2017) -
Homogenization theory with multiscale perturbation analysis for supervised learning of complex adsorption-desorption process in porous-media systems
由: Chew, Alvin Wei Ze, et al.
出版: (2022) -
Multiscale modeling of Polymers-Bridging the molecular continuum divide
由: Tan, V.B.C., et al.
出版: (2014) -
Polynomial approximations of a class of stochastic multiscale elasticity problems
由: Hoang, Viet Ha, et al.
出版: (2017) -
High dimensional finite element method for multiscale nonlinear monotone parabolic equations
由: Tan, Wee Chin, et al.
出版: (2020)