Mxene titanium carbide-based biosensor : strong dependence of exfoliation method on performance

Transition metal carbides, known as MXenes, are generated via the selective etching of "A" layers from their layered, ternary parent compounds, MAX phases, where M corresponds to early d-transition metal, A being a main group sp-element from either Group 13 or 14 and carbon or nitrogen bei...

Full description

Saved in:
Bibliographic Details
Main Authors: Chia, Hui Ling, Mayorga-Martinez, Carmen C., Antonatos, Nikolas, Sofer, Zdeněk, Gonzalez-Julian, Jesus J., Webster, Richard David, Pumera, Martin
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/152065
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Transition metal carbides, known as MXenes, are generated via the selective etching of "A" layers from their layered, ternary parent compounds, MAX phases, where M corresponds to early d-transition metal, A being a main group sp-element from either Group 13 or 14 and carbon or nitrogen being denoted by X. MXenes are being recognized as a new and uprising class of 2D materials with extraordinary physical and electrochemical properties. The huge specific surface area and outstanding electrical conductivity of MXenes, make them ideal candidates for sensing and energy applications. Herein, we demonstrated the successful incorporation of pristine MXene, Ti₃C₂ produced via HF etching and subsequent delamination with TBAOH, as a transducer platform toward the development of a second generation electrochemical glucose biosensor. Chronoamperometric studies demonstrate that the proposed biosensing system exhibits high selectivity and excellent electrocatalytic activity toward the detection of glucose, spanning over wide linear ranges of 50-27 750 μM and possess a low limit of detection of 23.0 μM. The findings reported in this study conceptually proves the probable applications of pristine MXenes toward the field of biosensors and pave ways for the future developments of highly selective and sensitive electrochemical biosensors for biomedical and food sampling applications.