Advantages and learning for quantum modelling
Simulating stochastic processes using less resources is a key pursuit in many sciences. This involves identifying and extracting the past information relevant to the process' future behavior and formulating `predictive models' for inferring the latter from the former. Significant efforts h...
Saved in:
主要作者: | Liu, Qing |
---|---|
其他作者: | Gu Mile |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/152073 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Quantum stochastic modelling and tensor networks
由: Yang, Chengran
出版: (2020) -
Benchmarking quantum cloud processes
由: Loke, Kum Yin
出版: (2021) -
Incompatible local hidden-variable models of quantum correlations
由: Laskowski, Wiesław, et al.
出版: (2013) -
Optimal stochastic modeling with unitary quantum dynamics
由: Liu, Qing, et al.
出版: (2020) -
Quantum-enhanced velocimetry with Doppler-broadened atomic vapor
由: Chen, Zilong, et al.
出版: (2020)