Sentiment-aware volatility forecasting

Recent advances in the integration of deep recurrent neural networks and statistical inferences have paved new avenues for joint modeling of moments of random variables, which is highly useful for signal processing, time series analysis, and financial forecasting. However, introducing explicit knowl...

Full description

Saved in:
Bibliographic Details
Main Authors: Xing, Frank Z., Cambria, Erik, Zhang, Yue
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/152084
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-152084
record_format dspace
spelling sg-ntu-dr.10356-1520842021-07-14T08:10:38Z Sentiment-aware volatility forecasting Xing, Frank Z. Cambria, Erik Zhang, Yue School of Computer Science and Engineering Engineering::Computer science and engineering Volatility Modeling Sentiment Knowledge Recent advances in the integration of deep recurrent neural networks and statistical inferences have paved new avenues for joint modeling of moments of random variables, which is highly useful for signal processing, time series analysis, and financial forecasting. However, introducing explicit knowledge as exogenous variables has received little attention. In this paper, we propose a novel model termed sentiment-aware volatility forecasting (SAVING), which incorporates market sentiment for stock return fluctuation prediction. Our framework provides an ensemble of symbolic and sub-symbolic AI approaches, that is, including grounded knowledge into a connectionist neural network. The model aims at producing a more accurate estimation of temporal variances of asset returns by better capturing the bi-directional interaction between movements of asset price and market sentiment. The interaction is modeled using Variational Bayes via the data generation and inference operations. We benchmark our model with 9 other popular ones in terms of the likelihood of forecasts given the observed sequence. Experimental results suggest that our model not only outperforms pure statistical models, e.g., GARCH and its variants, Gaussian-process volatility model, but also outperforms the state-of-the-art autoregressive deep neural nets architectures, such as the variational recurrent neural network and the neural stochastic volatility model. 2021-07-14T08:10:38Z 2021-07-14T08:10:38Z 2019 Journal Article Xing, F. Z., Cambria, E. & Zhang, Y. (2019). Sentiment-aware volatility forecasting. Knowledge-Based Systems, 176, 68-76. https://dx.doi.org/10.1016/j.knosys.2019.03.029 0950-7051 https://hdl.handle.net/10356/152084 10.1016/j.knosys.2019.03.029 2-s2.0-85063733190 176 68 76 en Knowledge-Based Systems © 2019 Elsevier B.V. All rights reserved.
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Computer science and engineering
Volatility Modeling
Sentiment Knowledge
spellingShingle Engineering::Computer science and engineering
Volatility Modeling
Sentiment Knowledge
Xing, Frank Z.
Cambria, Erik
Zhang, Yue
Sentiment-aware volatility forecasting
description Recent advances in the integration of deep recurrent neural networks and statistical inferences have paved new avenues for joint modeling of moments of random variables, which is highly useful for signal processing, time series analysis, and financial forecasting. However, introducing explicit knowledge as exogenous variables has received little attention. In this paper, we propose a novel model termed sentiment-aware volatility forecasting (SAVING), which incorporates market sentiment for stock return fluctuation prediction. Our framework provides an ensemble of symbolic and sub-symbolic AI approaches, that is, including grounded knowledge into a connectionist neural network. The model aims at producing a more accurate estimation of temporal variances of asset returns by better capturing the bi-directional interaction between movements of asset price and market sentiment. The interaction is modeled using Variational Bayes via the data generation and inference operations. We benchmark our model with 9 other popular ones in terms of the likelihood of forecasts given the observed sequence. Experimental results suggest that our model not only outperforms pure statistical models, e.g., GARCH and its variants, Gaussian-process volatility model, but also outperforms the state-of-the-art autoregressive deep neural nets architectures, such as the variational recurrent neural network and the neural stochastic volatility model.
author2 School of Computer Science and Engineering
author_facet School of Computer Science and Engineering
Xing, Frank Z.
Cambria, Erik
Zhang, Yue
format Article
author Xing, Frank Z.
Cambria, Erik
Zhang, Yue
author_sort Xing, Frank Z.
title Sentiment-aware volatility forecasting
title_short Sentiment-aware volatility forecasting
title_full Sentiment-aware volatility forecasting
title_fullStr Sentiment-aware volatility forecasting
title_full_unstemmed Sentiment-aware volatility forecasting
title_sort sentiment-aware volatility forecasting
publishDate 2021
url https://hdl.handle.net/10356/152084
_version_ 1707050445120208896