Bifunctional metal–organic frameworks toward photocatalytic CO₂ reduction by post-synthetic ligand exchange
Photocatalytic reduction of CO2 to useful fuel has been identified as a promising strategy to address the energy and environmental issues. Development of well-defined photocatalysts toward CO2 reduction has attracted increasing interest to gain insight into the reactive mechanism. Herein, by post-sy...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/152191 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Photocatalytic reduction of CO2 to useful fuel has been identified as a promising strategy to address the energy and environmental issues. Development of well-defined photocatalysts toward CO2 reduction has attracted increasing interest to gain insight into the reactive mechanism. Herein, by post-synthetic ligand exchange, a bifunctional Re-based metal–organic framework (MOF) was successfully prepared. It not only serves as a photosensitizer but also acts as a catalyst for photochemical reduction of CO2. Furthermore, it is found that a Re-based MOF containing 30% Re-based ligands displays improved activity compared to MOF with 100% Re-based ligands. This work provides clues to the design and synthesis of bifunctional MOFs toward photocatalytic CO2 reduction. |
---|