Multimaterial fiber electronics via convergence thermal drawing and cold drawing

Fibers are in every aspect of human life. However, they have surprisingly evolved less in technological functions to date. With outstanding mechanical flexibility and structural robustness, fibers are promising candidates in electronics. The realization of fiber electronics requires a challenging in...

全面介紹

Saved in:
書目詳細資料
主要作者: Wang, Zhixun
其他作者: Wei Lei
格式: Thesis-Doctor of Philosophy
語言:English
出版: Nanyang Technological University 2021
主題:
在線閱讀:https://hdl.handle.net/10356/152286
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Fibers are in every aspect of human life. However, they have surprisingly evolved less in technological functions to date. With outstanding mechanical flexibility and structural robustness, fibers are promising candidates in electronics. The realization of fiber electronics requires a challenging integration of multiple materials. Among varying approaches, thermal drawing can produce multimaterial fibers with sophisticated structures at an extended length. However, it requires all selected materials to soften or melt into viscous flows with matched viscosities at drawing temperature. This thesis addresses the challenges of co-drawing soft polymers and solid materials that do not soften or melt in the process via convergence thermal drawing. Monolithic fiber photodetector is demonstrated. Further, we utilize the mechanical mismatch between the different materials to create in-fiber structures by cold drawing. We also extend the study of this intriguing mechanical instability to two-dimensional materials/polymer composites and demonstrate a simple yet effective tool for nanomaterials structuring.