Dirichlet energy of Delaunay meshes and intrinsic Delaunay triangulations
The Dirichlet energy of a smooth function measures how variable the function is. Due to its deep connection to the Laplace–Beltrami operator, Dirichlet energy plays an important role in digital geometry processing. Given a 2-manifold triangle mesh M with vertex set V, the generalized Rippa's th...
Saved in:
Main Authors: | Ye, Zipeng, Yi, Ran, Gong, Wenyong, He, Ying, Liu, Yong-Jin |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/152295 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Efficient construction and simplification of Delaunay meshes
由: Liu, Yong-Jin, et al.
出版: (2018) -
Constructing intrinsic delaunay triangulations from the dual of geodesic voronoi diagrams
由: Liu, Yong-Jin, et al.
出版: (2018) -
Delaunay triangulation in R3 on the GPU
由: ASHWIN NANJAPPA
出版: (2013) -
I/O-efficient algorithm for constrained Delaunay triangulation with applications to proximity search
由: WU XINYU
出版: (2010) -
A GPU accelerated algorithm for 3D Delaunay triangulation
由: Cao, T.-T., et al.
出版: (2014)