Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline
In this paper, we develop a numerical scheme for a fourth-order fractional sub-diffusion problem using parametric quintic spline and a non-uniform approximation for Caputo fractional derivatives. The solvability, convergence and stability of the scheme are established in maximum norm, and it is show...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/152697 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we develop a numerical scheme for a fourth-order fractional sub-diffusion problem using parametric quintic spline and a non-uniform approximation for Caputo fractional derivatives. The solvability, convergence and stability of the scheme are established in maximum norm, and it is shown that the convergence order is higher than some earlier work done. Four numerical experiments are further carried out to demonstrate the efficiency of the proposed scheme as well as to compare with other methods. |
---|