Construction of a combined soil quality indicator to assess the effect of glyphosate application
Although the use of agrochemicals allowed increasing the crops productivity, in many cases led to soil deterioration. In this study, eight composite samples from different soils of two locations (San Martín and Anta) in Salta, Argentina, were collected and analyzed. All the samples were from loamy E...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/152732 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Although the use of agrochemicals allowed increasing the crops productivity, in many cases led to soil deterioration. In this study, eight composite samples from different soils of two locations (San Martín and Anta) in Salta, Argentina, were collected and analyzed. All the samples were from loamy Entisols (0-20 cm depth) under reduced tillage without and with direct spray application of glyphosate. Twenty six variables were determined (physical, chemical, and biological soil quality indicators). From them, those of higher specificity and sensitivity to changes following glyphosate application were identified by a stepwise reduction of variables aided by statistical analysis. Samples were grouped regarding location and application of glyphosate, to identify differential effects upon variables, and glyphosate sensitive variables were selected by discarding those influenced by other factors. Thence, they were used to compose a first approximation to a combined soil quality indicator (CSQI) to assess the effect of glyphosate use in agriculture upon the soil. Overall, the set of physical variables showed the same discriminating structure as the biological set. Finally, two biological, two chemical, and two physical indicators resulted as the most specific to quality variations by the application of the herbicide, being the most sensitive the microbial biomass carbon and the (Aminomethyl)phosphonic acid concentration in soil. When these two were considered into a CSQI, it was possible to discriminate samples with the application of glyphosate (lower quality) from those without application (higher quality). To the best of our knowledge, this is the first attempt to propose a CSQI that could play an important role to prevent degradation in soils subjected to glyphosate application, as it could aid in the early detection of soil quality loss. This would provide to land managers a decision tool to let the land rest from glyphosate application, to ensure sustainable practices in agriculture. |
---|