Quenched topological boundary modes can persist in a trivial system
Topological boundary modes can occur at the spatial interface between a topological and gapped trivial phase and exhibit a wavefunction that exponentially decays in the gap. Here we argue that this intuition fails for a temporal boundary between a prequench topological phase that possess topological...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/152950 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Topological boundary modes can occur at the spatial interface between a topological and gapped trivial phase and exhibit a wavefunction that exponentially decays in the gap. Here we argue that this intuition fails for a temporal boundary between a prequench topological phase that possess topological boundary eigenstates and a postquench gapped trivial phase that does not possess any eigenstates in its gap. In particular, we find that characteristics of states (e.g., probability density) prepared in a topologically non-trivial system can persist long after it is quenched into a gapped trivial phase with spatial profiles that appear frozen over long times postquench. After this near-stationary window, topological boundary mode profiles decay albeit, slowly in a power-law fashion. This behavior highlights the unusual features of nonequilibrium protocols enabling quenches to extend and control localized states of both topological and non-topological origins. |
---|