Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range

The oxygen catalytic reactions including the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the basis of many energy transformation and storage devices, e.g., fuel cells, metal-air batteries, and electrolysis cells. Extensive trials have been invested to develop earth-abunda...

全面介紹

Saved in:
書目詳細資料
Main Authors: Yin, Mingming, He, Miao, Hu, Ruigan, Sun, Zixu, Li, Hong
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/152957
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The oxygen catalytic reactions including the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the basis of many energy transformation and storage devices, e.g., fuel cells, metal-air batteries, and electrolysis cells. Extensive trials have been invested to develop earth-abundant oxygen catalysts to lower the cost and to boost the energy efficiency of these electrochemical devices. Among these oxygen catalysts, manganese dioxide (MnO2) is attracting ever-increasing interest owing to its high earth-abundance, low cost, and well-balanced activity-stability performances. In this review, the mechanisms of ORR and OER catalysis, methods for activity enhancement, and various applications of MnO2 oxygen catalysts in energy conversion and storage are summarized and discussed. As the ORR and OER catalysts in the whole pH range, the Mn3+ intermediate in MnO2 is identified as the active center. To optimize the catalytic performance of MnO2, the strategies of heteroatom doping, morphology tuning, heterostructure forming, conductor supporting, defect engineering, and valence regulating are implemented. Moreover, the applications of MnO2 in metal-air batteries, fuel cells and water splitting systems are detailed. Lastly, some prospects of MnO2 oxygen catalysts are proposed for the further development.