State-aware stochastic optimal power flow

The increase in distributed generation (DG) and variable load mandates system operators to perform decision-making considering uncertainties. This paper introduces a novel state-aware stochastic optimal power flow (SA-SOPF) problem formulation. The proposed SA-SOPF has objective to find a day-ahead...

Full description

Saved in:
Bibliographic Details
Main Authors: Pareek, Parikshit, Nguyen, Hung D.
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/153086
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The increase in distributed generation (DG) and variable load mandates system operators to perform decision-making considering uncertainties. This paper introduces a novel state-aware stochastic optimal power flow (SA-SOPF) problem formulation. The proposed SA-SOPF has objective to find a day-ahead base-solution that minimizes the generation cost and expectation of deviations in generation and node voltage set-points during real-time operation. We formulate SA-SOPF for a given affine policy and employ Gaussian process learning to obtain a distributionally robust (DR) affine policy for generation and voltage set-point change in real-time. In simulations, the GP-based affine policy has shown distributional robustness over three different uncertainty distributions for IEEE 14-bus system. The results also depict that the proposed SA-OPF formulation can reduce the expectation in voltage and generation deviation more than 60% in real-time operation with an additional day-ahead scheduling cost of 4.68% only for 14-bus system. For, in a 30-bus system, the reduction in generation and voltage deviation, the expectation is achieved to be greater than 90% for 1.195% extra generation cost. These results are strong indicators of possibility of achieving the day-ahead solution which lead to lower real-time deviation with minimal cost increase.