Functionalized MXene enabled sustainable water harvesting and desalination

Solar irradiation is a promising resource for sustainable energy conversion and storage in many technological fields. Interfacial solar steam generator is emerging as a sustainable system for water harvesting under natural solar irradiance. However, natural sunlight is usually insufficient for conve...

Full description

Saved in:
Bibliographic Details
Main Authors: Fei, Jipeng, Koh, See Wee, Tu, Wengguang, Ge, Junyu, Hamid, Rezaeyan, Hou, Shuai, Duan Hongwei, Lam, Yee Cheong, Li, Hong
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/153149
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Solar irradiation is a promising resource for sustainable energy conversion and storage in many technological fields. Interfacial solar steam generator is emerging as a sustainable system for water harvesting under natural solar irradiance. However, natural sunlight is usually insufficient for conventional interfacial (2D absorber) solar steam generators to achieve high solar steam efficiency (>85%). Herein, a functionalized MXene-polymeric membrane-based solar steam generator in a heat localization structure is reported as an efficient water harvesting and desalination system. The functionalized MXene flakes are homogeneously dispersed and encapsulated in polymeric networks of cellulose acetate in the crosslinking process, where water is automatically pumped through the absorber in the embedded nano/micro channels. As such, the fabricated solar steam generator shows a net evaporation rate (with respect to that in the dark condition) of 1.47 kg m−2 h−1 with 92.1% efficiency under 1 sun illumination. Moreover, the salt rejection rate for high salinity seawater (original Na+ concentration is 18 000 mg L−1) reaches up to 97.5%, generating drinkable water that meets the WHO standard. The new photothermal membrane absorber is cost-effective, scalable, washable, and stable under harsh conditions; holding great promise for practical solar desalination applications.