Antimony telluride nanoplates for thermoelectric applications
This project focuses on a novel solvothermal synthesis method of Antimony Telluride nanoplates in the pure and doped forms for thermoelectric applications. As compared with its bulk counterpart, Sb2Te3 has numerous added advantages, mainly attributed to its quantum confinement effect. The nanopla...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/15318 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This project focuses on a novel solvothermal synthesis method of Antimony Telluride nanoplates in the pure and doped forms for thermoelectric applications. As compared with its bulk counterpart, Sb2Te3 has numerous added advantages, mainly attributed to its quantum confinement effect.
The nanoplates were tested for electrical resistivity and Seebeck coefficient (ZT) to determine improvements in thermoelectric properties and possible device applications. Numerous elements have been test-doped into the Sb2Te3 nanocrystals however experiments were unsuccessful. The failure to further improve the thermoelectric properties of Sb2Te3 nanocrystals may be accounted for by improper synthesis techniques and/or wrong choice of doping element. |
---|