Chloroplast membrane lipid remodeling protects against dehydration by limiting membrane fusion and distortion

Dehydration damages the structural integrity of the chloroplast membrane and, consequently, the normal photosynthetic function of this organelle. Remodeling of galactolipids by converting monogalactosyl-diacylglycerol (MGDG) to digalactosyl-diacylglycerol (DGDG) and oligo-galactolipids is an effecti...

Full description

Saved in:
Bibliographic Details
Main Authors: Chng, Choon-Peng, Wang, Kun, Ma, Wei, Hsia, K. Jimmy, Huang, Changjin
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/153324
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Dehydration damages the structural integrity of the chloroplast membrane and, consequently, the normal photosynthetic function of this organelle. Remodeling of galactolipids by converting monogalactosyl-diacylglycerol (MGDG) to digalactosyl-diacylglycerol (DGDG) and oligo-galactolipids is an effective adaptation strategy for protecting against dehydration damage to the chloroplast membrane. However, detailed molecular mechanisms are missing. In this study, by performing molecular-level simulations of bi-lamellar membranes under various dehydration conditions, we find that MGDG-to-DGDG remodeling protects the chloroplast membrane in a unique manner by simultaneously dictating both the extent and the pattern of fusion stalks formed with the apposed membrane. Specifically, MGDG-rich membranes form elongated stalks at a moderate dehydration level, whereas DGDG-rich membranes form smaller, rounded stalks. Simulations of wild-type and mutant Arabidopsis (Arabidopsis thaliana) outer chloroplast membranes further confirm that the mutant membrane without galactolipid remodeling is more susceptible to membrane fusion due to its higher MGDG content. Our work reveals the underlying physical mechanisms that govern the pattern and extent of membrane fusion structures, paving the way for rational genetic engineering of crops with improved dehydration tolerance.