Propagation-invariant space-time caustics of light

Caustics are responsible for a wide range of natural phenomena, from rainbows and mirages to sparkling seas. Here, we present caustics in space-time wavepackets, a class of pulsed beams featuring strong coupling between spatial and temporal frequencies. Space-time wavepackets have attracted much att...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Wong, Liang Jie
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/153406
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Caustics are responsible for a wide range of natural phenomena, from rainbows and mirages to sparkling seas. Here, we present caustics in space-time wavepackets, a class of pulsed beams featuring strong coupling between spatial and temporal frequencies. Space-time wavepackets have attracted much attention with their propagation-invariant intensity profiles that travel at tunable superluminal and subluminal group velocities. These intensity profiles, however, have been largely restricted to an X-shape or similar pattern. We show that space-time caustics combine the propagation invariance of space-time wavepackets with the flexible design of caustics, allowing for customizable intensity patterns in space-time wavepackets. Our method directly provides the phase distribution needed to realize user-designed caustic patterns in space-time wavepackets. We show that space-time caustics can feature in a broad range of intriguing optical phenomena, including backward traveling caustics formed from purely forward propagating waves, and nondiffracting beams that evolve with time. Our findings should open the doors to an even wider range of structured light with spatiotemporal coupling.