Multimodal audio-visual emotion detection
Audio and visual utterances in video are temporally and semantically dependent to each other so modeling of temporal and contextual characteristics plays a vital role in understanding of conflicting or supporting emotional cues in audio-visual emotion recognition (AVER). We introduced a novel tempor...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Research |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/153490 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Audio and visual utterances in video are temporally and semantically dependent to each other so modeling of temporal and contextual characteristics plays a vital role in understanding of conflicting or supporting emotional cues in audio-visual emotion recognition (AVER). We introduced a novel temporal modelling with contextual features for audio and video hierarchies to AVER. To extract abstract temporal information, we first build temporal audio and visual sequences that are then fed into large Convolutional Neural Network (CNN) embeddings. We trained a recurrent network to capture contextual semantics from temporal interdependencies of audio and video streams by using the abstract temporal information. The encapsulated AVER approach is end-to-end trainable and enhances the state-of-art accuracies with a greater margin. |
---|