Sag source location and type recognition via attention-based independently recurrent neural network
Accurate sag source location and precise sag type recognition are both essential to verifying the responsible party for the sag and taking countermeasures to improve power quality. In this paper, an attention-based independently recurrent neural network (IndRNN) for sag source location and sag type...
محفوظ في:
المؤلفون الرئيسيون: | Deng, Yaping, Liu, Xinghua, Jia, Rong, Huang, Qi, Xiao, Gaoxi, Wang, Peng |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/153573 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Cause, classification of voltage sag, and voltage sag emulators and applications : a comprehensive overview
بواسطة: Han, Yang, وآخرون
منشور في: (2021) -
ATTENTIVE RECURRENT NEURAL NETWORKS
بواسطة: LI MINGMING
منشور في: (2017) -
Active/Reactive Power Control of Photovoltaic Grid-Tied Inverters with Peak Current Limitation and Zero Active Power Oscillation during Unbalanced Voltage Sags
بواسطة: Dehghani Tafti, Hossein, وآخرون
منشور في: (2018) -
Temporal Spiking Recurrent Neural Network for Action Recognition
بواسطة: Wang, W., وآخرون
منشور في: (2022) -
ASSESSMENT AND ALLEVIATION OF VOLTAGE SAG-INDUCED ECONOMIC LOSSES IN MODERN INDUSTRIAL DISTRIBUTION SYSTEM
بواسطة: BHUJADE RAHUL SADANAND
منشور في: (2023)