Scattering by lossy anisotropic scatterers : a modal approach

Scattering from anisotropic geometries of arbitrary shape is relatively difficult to interpret physically, involving the intricate interplay between material and geometric effects. Insights into complex scattering mechanisms are often enabled by modal methods that decompose the response into the wel...

Full description

Saved in:
Bibliographic Details
Main Authors: Kossowski, Nicolas, Chen, Parry Y., Wang, Qi Jie, Genevet, Patrice, Sivan, Yonatan
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/153592
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Scattering from anisotropic geometries of arbitrary shape is relatively difficult to interpret physically, involving the intricate interplay between material and geometric effects. Insights into complex scattering mechanisms are often enabled by modal methods that decompose the response into the well-understood multipolar resonances. Here, we extend the generalized normal mode expansion to lossy and anisotropic scatterers. Unique to the method is that it decomposes the total response of any anisotropic resonator into the modes of the corresponding isotropic resonator. This disentangles the material and geometric contributions to the scattering of any anisotropic resonator. Furthermore, the method can identify absorption and scattering resonances with separate sets of modes. We illustrate our method by considering an infinitely long cylinder with concentric metallic/dielectric layers, targeting the complex case of an effective hyperbolic response. We show that by scanning the material composition of the hyperbolic medium, we can achieve any desired scattering effect, including backscattering cancellation.